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ABSTRACT 

 

This paper proposes a new approach for fitting an optimized biarc to a given 2D polygon and its 

two end tangents. A biarc can be constructed which matches two end points and two end tangents, 

but an additional constraint is required to make the biarc unique. The conventional approach to 

biarc construction, which has been adopted in arc spline approximation, introduces additional 

constraints to uniquely determine the biarc. Instead of imposing such constraints, the proposed 

approach exploits the inherent freedom in the choice of the biarc to achieve a better fit minimizing 

the distance between the polygon and the biarc. The approach is simple in concept and acceptable 

in computation. When applied in arc spline approximation tasks, the approach can play an 

important role in reducing the number of segments in the resulting arc spline. Some experimental 

results demonstrate its usefulness and quality. 
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1. INTRODUCTION 

Arc spline is a kind of geometric curve made of 

circular arcs and line segments. It is easy to use, 

computationally efficient in shape modeling, and well 

used as the description of tool path of CNC machines. In 

programming the CNC tool path, fewer arc segments can 

help to improve the production efficiency by reducing 

the number of instructions and tool motions [1-15]. 

Therefore, approximating points, polygons, or arbitrary 

curves with arc splines is of particular importance. 

Approximations to point data by G1 arc splines have 

been investigated in the past [1-8]. Approximations to 

given curves by G1 arc splines have also been extensively 

researched [9-15]. 

Biarcs have been widely used for such arc spline 

approximation. A biarc consists of two circular arcs with 

G1 continuity at a joining point. Given two end points 

and two end tangents, a biarc can be constructed which 

matches the points and tangents, but an additional 

constraint is required to make the biarc unique. The 

conventional approach to biarc construction, which has 

been adopted in arc spline approximation, introduces 

various additional constraints to uniquely determine the 

biarc. The difference of the radii of the two circular arcs 

can be minimized, with the result that the angles of the 

two arcs are equal [1]. The difference of the curvatures 

of the two arcs can be minimized, with the result that the 

joining point is on the bisector of the line segment joining 

the two end points [1],[5],[7]. Also, the ratio of the two 

radii can be made as close to 1 as possible, with the 

result that the tangent at the joining point is parallel to 

the line joining the two end points [1],[2],[10]. 

This paper proposes a new approach for fitting an 

optimized biarc to a given 2D polygon and its two end 

tangents. Instead of imposing such constraints to make 

the biarc unique, the proposed approach exploits the 

inherent freedom in the choice of the biarc to achieve a 

better fit minimizing the distance between the polygon 

and the biarc. The approach is simple in concept, and it 

is computationally acceptable since the distance between 

a polygon and its fitted biarc can be computed directly 

and precisely. When applied in arc spline approximation 

tasks, the approach can reduce the number of segments 

in the arc spline much better than the conventional one. 

Some experimental results demonstrate its usefulness 

and quality. 

The rest of the paper is organized as follows. In 

Section 2, a biarc formulation is given briefly. Section 3 

describes the details on the optimal single biarc fitting. 

Section 4 describes the application of the proposed 

approach in two approximation tasks: G1 arc spline 

approximation of 2D point data and G1 arc spline 

approximation of a planar curve. Section 5 closes the 

paper. 

 

2. BIARC FORMULATION 

A biarc consists of two smoothly connected circular 

arcs that interpolate two end points and two end 
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tangents [1],[5],[8],[14],[15]. Given two points 
sp and 

ep , and two unit tangents 
st  and et , a biarc is sought so 

that it passes through 
sp  and 

ep , and it is tangential at 

sp  to 
st  and at 

ep  to 
et , and the arcs join in G1 

continuity. We adopt the biarc formulation presented in 

Refs. [8],[14]. As shown in Fig. 1, a biarc can be defined 

by five control points [ ]Tiii

w

i wwpp =  )4,...,0( =i . 

 

 
Fig. 1. Biarc formulation. 

 

The unknown control points w

1p , w

2p , and w

3p  are 

sought. After the Euclidean projections 
1p , 

2p , and 
3p  

are computed, weights are assigned to them. Since the 

end tangents are assumed to be of unit lengths, we get 

the following conditions: 

 

stpp α+= 01
, 

etpp β−= 43
, 

312 ppp
βα

α
βα

β
+

+
+

= ,                           (1) 

 

where α  and β  are positive values. The three points 
1p , 

2p , and 
3p  can be computed by solving the following 

equation: 

 

0)1(2)(2 =−⋅++⋅+⋅ eses ttttvvv αββα ,           (2) 

 

where 
40 ppv −= . The only unknowns in Eqn. (2) are α  

and β . Various conditions can be imposed on the ratio 

βα=r  to have a unique solution [1],[2],[5],[7],[10]. 

When the ratio r is specified, Eqn. (2) leads to the 

following quadratic equation: 

 

0)1(2)(2
2 =−⋅++⋅+⋅ eses rr ttttvvv ββ ,           (3) 

 

Special cases requiring four arcs appear when 1=⋅ es tt  

or 0)( =+⋅ esr ttv . When Eqn. (3) has a positive root, the 

unknown points in Eqn. (1) are uniquely determined. 

The weights are assigned as follows [8],[14],[16]: 

 

1420 === www ,     )cos( 11 α=w ,     )cos( 23 α=w , 

 

where 
1α  and 

2α  denote the half sweep angles of the 

first and the second arc, respectively. 

 

3. OPTIMAL SINGLE BIARC FITTING 

Consider a polygon P  to be defined by a sequence 
of points 

ip  ),...,0( ni =  and two end tangents to be 

given as 
st  at 

0p  and 
et  at 

np . The basic idea of the 

proposed approach is to fit a biarc B  to the polygon P  

and its two end tangents in a way that minimizes the 

distance between the polygon and the biarc. Recall that 

different biarcs can be obtained with different ratios 

βα=r  in Eqn. (3). We can consider a mapping )(rB  

that creates a biarc B  by solving Eqn. (3) with the ratio r. 

An optimized biarc can be obtained by finding an 

optimal ratio r̂  such that ( ) ( ))(,min)ˆ(, rdistrdist
Rr

BPBP
∈

= . 

The optimal value r̂  is probably found by nonlinear 

optimization searches [17]. Its approximation can be 

obtained by an iterative approach of progressively 

limiting the promising domain of the ratio. The approach 

divides the domain of interest at discrete ratio values, 

finds the ratio value leading to a biarc with the minimum 

distance, and replaces the domain by a smaller sub-

domain in the vicinity of the ratio value. It repeats these 

steps until the range of the domain is smaller than a 

desired value. It is recommended to start with dense 

discrete values and decrease their number as iteration 

proceeds. Described below is an iterative procedure for 

such optimal single biarc fitting. 

 

Input: a polygon },...,{ 0 nppP = , two unit tangents 
st  

and 
et . 

Output: a flag f for indicating whether a biarc can be 

fitted and, if possible, the fitted biarc B . 

(Step 1) If the two end points 
0p , 

np  and the two 

tangents 
st , 

et  lead to one of special cases 

requiring four arcs, quit the procedure with the 

flag f set to false. 

(Step 2) Initialize an integer value d and choose a real 

value ρ  where 10 << ρ . For instance, the 

values d and ρ  have been initialized as 10 and 

0.25, respectively. 

(Step 3) Initialize an upper limit 
ur  of the ratio βα  in 

Eqn. (3). For instance, the value 
ur  has been 
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initialized as 5. Set its center 
cr  and lower limit 

lr  as 1 and ur1 , respectively. 

(Step 4) Compute the range RΔ  of the current domain 

rl RRR ∪=  where { }cll rrrrR ≤≤= |  and 

{ }ucr rrrrR ≤≤= | , and choose (2d+1) discrete 

ratio values 
ir  )20( di ≤≤  on the current 

domain. 

(Step 5) For each ratio 
ir , obtain a biarc )( irB  

interpolating the two end points 
0p , 

np  and the 

two unit tangents 
st , 

et  by solving Eqn. (3) 

and compute the distance ( ))(, irdist BP  

between the biarc )( irB  and the polygon P . 

(Step 6) Find an index j leading to a biarc )( jrB  with 

the minimum distance. 

(Step 7) If there is no such an index j, quit the 

procedure with the flag f set to false. If the 

current range is small enough compared to the 

initial range, quit the procedure with the biarc 

)( jrB  and the flag f set to true. For example, 

the ratio can be set to 410− . 

(Step 8) Replace the domain by a smaller one in the 

vicinity of the value 
jr . If 0=j , 

0rrl ← , 
1rrc ← , 

and 
2rru ← . If dj 2= , 

22 −← dl rr , 
12 −← dc rr , 

and 
du rr 2← . Otherwise, 

1−← jl rr , 
jc rr ← , 

and 
1+← ju rr . 

(Step 9) Update the value d as ( )( )dd )1(int,2max ρ−=  

and go to Step 4. 

 

 

In Step 4, the range RΔ  is computed as 

rl RRR Δ+Δ=Δ  where 
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Also, the ratio values 
ir  are determined as follows: 
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for di ,..,0= . Note that the values 
lRΔ , 

rRΔ , and 
ir  are 

determined differently according as they are greater than 

1 or not. For example, when 51=lr , 1=cr , 5=ur , and 

4=d , the ranges are determined as 4=Δ=Δ rl RR , and 

the ratio values are determined as {1/5, 1/4, 1/3, 1/2, 1, 

2, 3, 4, 5}. 

The procedure includes biarc fitting with the ratio 

1=r . This implies its robustness since Eqn. (3) with 

1=r  has a positive root in the general case and a valid 

biarc is created. Although the iterative approach taken 

herein requires more computation than the others 

interpolating two points and two tangents, this increase is 

acceptable since the direct computation of the distance 

between a biarc and a polygon is available. 

 

3.1 Distance Metric in Single Biarc Fitting 

The major benefit of using circular arcs is that the 

distance between a point and a circular arc can be 

computed precisely and, then, the distance between a 

polygon and its fitted biarc can be computed directly. 

Note that the polygon P  and the biarc B  have the same 

end points. Let the biarc B  consist of two arcs 
lA  and 

rA . The distance between the polygon P  and the biarc 

B  can be defined in various ways. Two definitions of the 

distance are considered herein. 

When the degree of mismatch between the biarc B  

and the polygonal points 
ip  is considered, the distance is 

defined as 

 

),(max),( )(
0

iji

n

i
distdist ApBP

=
= ,            (4) 

 

where the arc 
)(ijA  is the closest arc whose bounding 

rays contain the point 
ip . See Fig. 2. The distance 

between the point 
ip  and the arc 

)(ijA  is computed as 

 

)()()(
~),( ijiijiiiji raddist cpppAp −−=−= ,           (5) 
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where the point 
ip

~  is the orthogonal projection of the 

point 
ip  onto the arc, 

)(ijrad  is the radius of the arc, and 

)(ijc  is its center. 

When the degree of mismatch between the biarc B  

and all the points lying on the polygon P  is considered, 

the distance is defined as 

 

),(max),( )(iki
i
distdist ALBP = ,            (6) 

 

where the polygon P  consists of a sequence of line 

segments 
iL  and the end points of each line segment 

iL  

lie within the sweep angle of the same closest arc 
)(ikA
 of 

the biarc B . The distance between the line segment 
iL  

and the arc 
)(ikA
 is computed as 

 

( )
mqpiki ddddist ,,max),( )( =AL ,            (7) 

 

where pp ~−=pd , qq ~−=qd ,  

and 





−

∈−
=

otherwise0.1

if~ Lmmm l

md
. 

 

See Fig. 2. The point m  is the perpendicular projection 

of the center c  onto the line segment 
iL . This result is 

consistent with that of Refs. [14],[15]. 

 

 
Fig. 2. Distance between a line segment and a circular arc. 

 

 

The distance ),( BPdist  between the biarc B  and all 

the points lying on the polygon P  can be computed by 

first initializing the distance as zero and then repeating 

the following steps for each line segment 
iL : 

 

• If the two points of the line segment 
iL  lie within 

the sweep angle of the same closest arc 
)(ikA  for 

{ }rlik ,)( ∈ , compute the distance ),( )(ikidist AL . 

Then, if ),(),( )( BPAL distdist iki > , replace the 

distance ),( BPdist  by ),( )(ikidist AL . 

• Otherwise, the line segment is divided with respect 

to the adjacent ray of the arcs and the new 

segments are tested in the same way. 

• If both points are outside the sweep angles of all the 

arcs, the line segment is not accepted and 

),( )(ikidist AL  is set to a large number. 

 

3.2 Examples of Single Biarc Fitting 

The proposed approach was tested with various sets 

of 2D polygonal data. Two examples are included to 

demonstrate its usefulness of quality. The distance 

between a polygon and its fitted biarc is computed using 

Eqn. (6). Fig. 3 shows the first example of single biarc 

fitting. The test polygon is enclosed in a 6.39.5 ×  

rectangle. Fig. 3(a) shows a biarc fitted with 1=r  where 

the distance between the polygon and the biarc is 
210228.7 −× . Fig. 3(b) shows a biarc obtained with 

Sabin’s additional constraint that the tangent at the 

joining point should be parallel to the line joining the two 

end points [2],[10]. This corresponds to a biarc with 

726.1=r , and the distance is 110084.2 −× . Fig. 3(c) shows 

an optimal biarc obtained via the proposed approach 

which returns 784.0ˆ =r  where the distance is 210179.2 −× . 

 

(a) 

(b) 
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(c) 

 

Fig. 3. First example: (a) biarc with 1=r ; (b) biarc with Sabin’s 

constraint; (c) biarc with 784.0ˆ =r . 

 

Fig. 4 shows the second example of single biarc 

fitting. The test polygon is enclosed in a 6.36.4 ×  

rectangle. Fig. 4(a) shows a biarc fitted with 1=r  where 

the distance is 110004.2 −× . Fig. 4(b) shows a biarc 

obtained with Sabin’s constraint. This corresponds to a 

biarc with 741.0=r , and the distance is 110518.2 −× . Fig. 

4(c) shows an optimal biarc fitted with 692.4ˆ =r  where 

the distance is 210024.7 −× . 

 

(a) 

(b) 

(c) 

 

Fig. 4. Second example: (a) biarc with 1=r ; (b) biarc with 

Sabin’s constraint; (c) biarc with 692.4ˆ =r . 

 

4. APPLICATIONS 

The proposed approach for optimal single biarc 

fitting can be applied to several arc spline approximation 

tasks. Presented herein are its two practical applications: 

G1 arc spline approximation of 2D point data and G1 arc 

spline approximation of a planar curve. Their 

implementation has been done with C language on an 

IBM compatible personal computer with an Intel 

Pentium III processor. 

 

4.1 Arc Spline Approximation of 2D Point Data 

This task is to approximate 2D point data by a G1 

arc spline made of biarcs [1-8]. The point data includes a 

sequence of 2D points that form a polygon. Tangents at 

some points can be specified optionally. Tangents for 

approximation of discrete data can be estimated by 

some local methods or by B-spline curve fitting methods 

[8]. The idea used herein for estimating tangents is to 

approximate a cubic B-spline curve to the polygon 

within a tolerance [16]. We call it a base curve. The 

tangents at the points are obtained as follows: the points 

are perpendicularly projected onto the base curve; and 

the tangent directions are the derivatives of the base 

curve at them. A practical and simple approach for this 

G1 arc spline approximation of 2D point data is to divide 

the point set of interest into smaller point subsets such 

that each point subset can be approximated by a biarc 

within a specified tolerance [5]. A point subset, which 

requires more than a biarc, can be simply divided into 

two at its median point. More details on G1 arc spline 

approximation of 2D point data can be found in Refs. 

[5],[8]. 

This arc spline approximation was tested with 

various sets of 2D point data. Fig. 5 shows its application 

to a point set that forms an s-shaped polygon composed 

of 251 points. Its points are enclosed in a 0.180.10 ×  

rectangle. The tolerance is given as 10-1. The distance 
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between a point subset and its fitted biarc is computed 

using Eqn. (4). Summarized in Tab. 1 are the results of 

arc spline approximation for six different tolerance levels. 

The results include the arc spline approximation using 

biarc fitting with the fixed ratio r=1 and with Sabin’s 

constraint. Note that the approximation using the 

optimal biarc fitting requires the smaller number of 

circular arcs than the others. The optimal biarc fitting 

reduces the number of arcs by about 30% for biarc fitting 

with the fixed ratio, and about 35% for biarc fitting with 

Sabin’s constraint. 

(a) (b) 

 

 

(c) 

 

 

(d)  (e) 
 

Fig. 5. Arc spline approximation to an s-shaped point set: (a) 

input point set; (b) cubic B-spline base curve with its control 

polygon; (c) biarcs obtained via biarc fitting with 1=r ; (d) 

biarcs obtained via biarc fitting with Sabin’s constraint; (e) 

biarcs obtained via optimal biarc fitting. 
 

 

Numbers of circular arcs 

Tol. Biarc fitting 

with r=1 

Biarc fitting 

with Sabin’s 

constraint 

Optimal 

biarc fitting 

10-1 20 22 16 

10-2 54 62 42 

10-3 212 234 138 

10-4 398 408 280 

10-5 488 488 296 

10-6 500 500 302 
 

Tab. 1. Results of arc spline approximation of 2D point data. 

 

 

4.2 Arc Spline Approximation of a Planar Curve 

This task is to approximate a planar parametric 

curve with a G1 arc spline made of biarcs [9-15]. The 

practical approach for G1 arc spline approximation of a 

planar curve is to divide the curve of interest into smaller 

segments such that each segment can be approximated 

by a biarc within a specified tolerance [14],[15]. A curve 

segment, which requires more than a biarc, can be 

simply divided into two at its median parameter. The 

biarc is obtained by polygonal approximation of the 

curve segment and single biarc fitting to the 

approximated polygon. The specified tolerance δ  should 
be divided into two 

1δ  and 
2δ  where δδ a=1

, δδ b=2
 

and 1=+ ba . The tolerance 
1δ  is for polygonal 

approximation and the tolerance 
2δ  for single biarc 

fitting. More details on G1 arc spline approximation of a 

planar curve can be found in Refs. [14],[15]. 
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This arc spline approximation was tested with 

various sets of planar curves. Fig. 6 shows its application 

to a closed cubic B-spline curve, which is cross-shaped 

and defined with 15 control points on a uniform knot 

vector. Its control points are enclosed in a 0.300.25 ×  

rectangle. The tolerance given as 10-1 is divided into two 

with a=0.2 and b=0.8. The distance between a polygon 

and its fitted biarc is computed using Eqn. (6). 

Summarized in Tab. 2 are the results of the tests for six 

different accuracy levels and two different tolerance 

distributions. The results also include the arc spline 

approximation using biarc fitting with the fixed ratio r=1 

and with Sabin’s constraint. Note that the approximation 

using the optimal biarc fitting requires the smaller 

number of circular arcs than the others. The optimal 

biarc fitting reduces the number of circular arcs by about 

20% for biarc fitting with the fixed ratio, and about 21% 

for biarc fitting with Sabin’s constraint. 

 

 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 6. Arc spline approximation applied to a cross-shaped 

curve: (a) cubic B-spline curve; (b) approximated polygon; (c) 

biarcs obtained via biarc fitting with 1=r ; (d) biarcs obtained 

via biarc fitting with Sabin’s constraint; (e) biarcs obtained via 

optimal biarc fitting. 
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Numbers of circular arcs 

Tol. 

distrib. 

(a,b) 

Tol. 

Poly. 

approx. 

(# of pts.) 
Biarc fitting 

with r=1 

Biarc fitting 

with 

Sabin’s 

constraint 

Optimal 

biarc fitting 

10-1 113 56 60 36 

10-2 371 96 108 76 

10-3 1073 196 196 164 

10-4 3603 392 400 352 

10-5 11837 856 864 796 

a=0.2 

b=0.8 

10-6 33917 1854 1854 1780 

10-1 69 68 64 48 

10-2 229 136 136 100 

10-3 749 304 300 216 

10-4 2137 684 672 484 

10-5 7219 1208 1208 1016 

a=0.5 

b=0.5 

10-6 23655 2632 2632 2096 

 
Tab. 2. Results of arc spline approximation of a B-spline curve. 

 

 

Arc spline approximation using optimal single biarc 

fitting can be usefully applied in CNC tool path 

generation for precision machining of aspheric lenses, 

which are used as important parts of various optical 

products [15]. For some aspheric lenses, their faces 

contain rotationally symmetric surfaces defined by 

revolving sectional curves a full °360  about an axis. 

Single point diamond turning operations are mostly 

performed to machine the molds that can later be used 

for producing the lenses via polymer injection molding 

[18]. As a very small tolerance is specified, fewer arcs are 

helpful to describe the tool path of CNC machines. Fig. 7 

shows arc spline approximation applied to represent the 

offset curves of the sectional curves with G1 arc splines 

made of biarcs. The sectional curves are enclosed in a 

0.250.25 ×  rectangle. The tolerance given as 10-3 is 

divided into two with a=0.2 and b=0.8. The distance 

between a polygon and its fitted biarc is computed using 

Eqn. (6). 

 

 

    
(a)                                                (b) 

(c) 

(d) 
 

 

Fig. 7. Arc spline approximation applied in CNC tool path 

generation for precision machining of an aspheric lens: (a) 2D 

cross section of the lens; (b) rendered image of the lens; (c) 

offset curves of two major sectional curves; (d) biarcs obtained 

via optimal biarc fitting. 
 

5. CONCLUDING REMARKS 

This paper has presented a new approach for fitting 

an optimized biarc to a given 2D polygon and its two 

end tangents. While the conventional approach to biarc 

construction introduces additional constraints to uniquely 

determine the biarc, the proposed approach exploits the 

inherent freedom in the choice of the biarc to achieve a 

better fit minimizing the distance between the polygon 

and the biarc. The proposed approach is simple in 

concept and acceptable in computation. When applied 

in arc spline approximation tasks, the approach can play 

an important role in reducing the number of segments in 

the resulting arc spline. Some experimental results have 

demonstrated its usefulness and quality. 
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